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A cumulative property of Coulomb collisions in plasmas was formulated by Nanbu.
Asuccession of small-angle binary collisions is grouped into a unique binary collision
with a large scattering angle; the law of scattering is given by the exponential cosine
function. Proposed here is a Coulomb collision algorithm for weighted particles,
based on that work. Three cases of the weight algorithm are considered: (1) the
weights of particles are the same; (2) the weights of particles are different from
species to species; and (3) the weights are different from particle to particle. Sample
calculations demonstrate the accuracy of the weight algorithgnsss Academic Press

1. INTRODUCTION

The use of high plasma density and low gas pressure is a recent trend in plasma-a:
materials processing. Plasma sources are changing from radio-frequency discharge t
methods based on inductive coupling, electron cyclotron resonance, helicon waves, c
face waves. Physically, this means that Coulomb collisions play a more important ro
processing plasmas. Copious articles have been published on methods to model Co
collisions in plasmas. A selection of the published papers are referred to here. (See al
references cited in the following papers.) In Coulomb collisions small-angle collisions
much more important than collisions resulting in large velocity changes. Based on this
Rosenbluth, MacDonald, and Judd [1] starting from the Boltzmann equation, derivec
Fokker—Planck equation for an arbitrary distribution function. Many articles on Coulo
collision simulations still are influenced by Rosenbluth, MacDonald, and Judd’s pa
Takizuka and Ak’[2] proposed a binary collision model suited to a Monte Carlo partic
simulation of plasma. Birdsall [3] discussed the feasibility of their method in particle-in-
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640 NANBU AND YONEMURA

codes. Miller and Combi [4] proposed a collision algorithm for weighted particles bas
on Takizuka and Ab’s method. Ma, Sydra, and Dawson [5] extended Takizuka arckAb”
method to construct a gyrokinetic particle simulation model. Wetrad. [6] made a signifi-
cant improvement of Takizuka and Aks’method; the relation between a collision operato
proposed and the Fokker—Planck operator of the Landau form was defined clearly. J
et al.[7] presented a method to calculate the force acting on a particle from grid quantit
in the particle-in-cell codes. Since two collision frequencies in the expression for the fo
are derived by assuming a drifting Maxwellian distribution, their method cannot be us
when deviations from Maxwellian behavior are significant. Manheimer, Lampe, and Joy
[8] improved this point by use of a Fokker—Planck equation to describe an isotropic veloc
distribution function. In all of these works small-angle Coulomb collisions are calculat
one by one. If many small-angle collisions can be grouped into one large-angle collisi
collisions can be calculated more efficiently since the use of a larger time step is possi
In fact, Cranfill, Brackbill, and Goldman [9] used the idea of grouping many small-ang
collisions and succeeded in using a large time step in their time-implicit particle-in-c
algorithm. Nanbu [10, 11] proposed a quite different formulation on a cumulative prope
of Coulomb collisions in plasmas; he determined the probability distribution for a cum
lative deflection angle resulting from many small-angle collisions. The idea of groupi
is also discussed in the Boltzmann equation analysis of electron—electron collisions [.
The nature of Nanbu'’s formulation yields a drastic decrease in computational effort tha
realized in the Monte Carlo particle simulation of Coulomb collisions.

In etching of metal or oxide, electronegative gases are usually employed. Let us ima
the particle-in-cell/Monte Carlo collision simulation of plasmas of electronegative gas
First the flow field is divided into small cells. For such gases electron number dens
is much lower than ion number density. The concept of “weight” is naturally introduce
to keep the number of simulated particles in a cell roughly equal among species. (If
weight isW, a particle represent real particles.) Another example is a high-temperatur
plasma, in which ions have multiple charges; hence, electron density is much higher t
ion density. In the high-temperature plasma case it is preferable to assign a larger we
to electrons. The introduction of weight is a common technique employed in Monte Ca
simulations of neutral molecules [13] and charged patrticles [4]. In the method propo:
we consider elastic collisions between charged particles. The inclusion of weight res
in momentum and energy not always being conserved in particle collisions, but it can
shown that macroscopic momentum and energy are conserved on the average. In the pi
work we propose a Coulomb collision algorithm for weighted particles, based on Nanb
theory [10] of Coulomb collisions.

2. HOW TO TREAT COULOMB COLLISIONS

In the particle-in-cell simulation of plasmas the computational domain is divided in
cells with a dimension of the Debye lengily. Since there is no need to consider the
Coulomb interaction between two particles separated Hyr more, it is an acceptable
approximation to model only the Coulomb collisions in a cell and disregard all charg
particles in neighboring cells. Therefore let us focus our attention only on the chair
particles in a cell. For simplicity we only consider the case when a plasma contains electt
(«) and a single species of iong)( Then we have only to consider«, «—3, and -8
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collisions. The number of real particles in a cell is too large to be simulated even by the
of a supercomputer. Therefore a small number of real particles are randomly samplec
simulated. Such particles are called simulated particles or, simply, particles, laetd N

be the numbers of simulated particteandg in a cell, in generallN, # Ng. The next step
is to determine the velocities of all simulated particles after time atepAccomplishing
this task requires an explanation of the essence of Nanbu'’s theory [10].

Letthe setgv,i;i=1,..., Ny} and{vg;; j =1, ..., Ng} be the velocities of particles
and velocities of particleg at timet, respectively. Hereaftev,; is defined as the velocity
of particle ¢i). Focusing our attention on particlei(), particle i) changes velocity due
to a—B anda—«a collisions in At. Initially we considera—3 collisions in At. To explain
Nanbu’s theory we begin with the case that the force between two particles is short re
In this case the postcollision velocit; is given by [14]

v M g i

Vi = Vai i [9(1 — cosy) + hsiny], (1a)
m, .

\/ﬁj = Vg + m[g(l — cosy) + hsiny]. (1b)

Herevg; andvy; are the precollision and postcollision velocities of a collision partag). (
The symbolan, andmg are the masses of particlesand 8, g(=V.i — Vg;) is the relative
velocity, x is the deflection angle @, and the Cartesian components of vettare

hy = g, cose,
hy = —(gygx cose + gg; sine)/g.,
h, = —(9,0x cose — ggy sine)/g.,

whereg, = (g7 +g2)"/? ande¢ is the azimuthal angle of a collision plane. Equation (1
satisfies the conservation of energy and momentum during a collision. Random sampl!
(x, ) are determined by use of the probabitityg, x) d2/or(g) of finding the postcollision
relative velocityy'(=V,; — Vj;) in solid angled2(=siny dx de) [15]. The symbolsr and
ot are the differential and the total cross section, respectively. Sirdmwes not depend on
e, e =2mU, whereU is a random number between 0 and 1. The probability of choosin
collision partner gj) is proportional tayor.

Letus go back to Coulomb collisions. Charged particles in a plasma undergo many sr
angle scatterings; such scatterings can be grouped into a unique binary collision with a
scattering angle [10]. Coulomb collisions can now be treated as if they were short-re
collisions; the velocities of particlea() and @) at the end of time stept are given by
Eq.(1), wherey is now the cumulative deflection anglegés a result of many small-angle
collisions with particleg. We now describe the method to determigg ¢, andy in Eq.(1).
The velocity of a collision partnems() is randomly sampled from the set of velocities o
particlesg; there is no need to pick up a special partner because paxtidleijdergoes
many small-angle collisions with particlgsin At. The method to pair particles and
B is described in Section 3.1. The anglés uniformly distributed, so that=27U. The
cumulative property is reflected in the rule to determind-irst note thaty is an angle
betweeng(=V,i —Vgj) andg'(=v,; —\/ﬂj). Let f(x)d2 be defined as the probability of
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finding g’ in solid angled2 (=27 siny dy). The functionf (x) is now given by [10].

exp(Acosy). )

fo) = —
X' = 4z sinhA

Here the shape factgk depends on the timeyt, spent by particledi) while engaged in
the cumulative collision. The factdk is a solution of the nonlinear equation

cothA — AL = exp[—s,5(AD)], 3)
where
Sy (At) _ |n Aaﬂ anﬂ 2n g_3At (4)
P At \ €opdap plap =

Hereq, and g represent the charges of partickesand g, o is the permittivity of free
space g is the reduced massg is the number densityg.s(=|Vsi — Vi) is the relative
speed, and Ik 4 is the Coulomb logarithm. The solution of Eq.(3) is tabulated in Ref.[9]
In the limit of At — 0 ors,s — 0 we haveA — 1/s,4; hence we need only consider small
x values in Eq.(2). Using cog~ 1 — x2/2, we see thaf (x) has a Gaussian profile with
a narrow width, as in the case of Takizuka andeARB]. In the limit of At — co we have

A — 0; hencef (x) — 1/4. This limit indicates isotropic scattering occurs as expectec
The time step\t is chosen in such a way that the valuegf, which changes from collision
to collision, does not exceed 5. Oneg, vgj, and At are given, we can make a random
sample of cog from Eq.(2), represented by

1
cosy = In(e™" + 2U sinhA), (5)

where O< x <z andU is the random number. Now since we have found )cand
siny =+(1— cos x)¥2in Eq.(1), the velocities of particlesi) and (3j) at timet 4+ At
can be obtained.

Aremark on forming the Coulomb logarithm may yield some insight into the formulatiol
Since InA g depends only weakly og,g, it is adequate to use the approximation [10]

A 21 optaprn (Gag)
“ GuGsl

Here the mean square of relative speed is

KT,  3KT;
= + —

-~ = + ((Ve) — (VgD

(92s)

wherek is the Boltzmann constant. This equation is obtained by assuming that the velo
distributions of particlesr and g are Maxwellian,T and(v) are the temperature and flow
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velocity in the distribution. In practical simulations we determine the cell properties si
as(v,) andT, by

1
(Vo) = N—aizz;vai,
To = 22 ((12) = (v%)?),

where(v2) is the mean of2,, v2,, .. ..

Now that we have described the method to determine the final velocity of pattigle (
at timet + At after the cumulative collision with particle® in time At, other particles
may be calculated in the same way. Repeating the procedure described, we can calcul
a—B, a—, andB—g collisions inAt. The order of types of collisions is arbitrary. We may
calculate collisions, say, in the order @f«, «—3, and 8—B8. The objective of the present
work is to present a systematic way to calculatera}p ande—« (or —8) collisions inAt

in the case when the weighis, andW; for speciesr andg are different.

3. COLLISIONS BETWEEN UNLIKE PARTICLES

An examination of Egs.(3) through (5) shows that the cumulative scattering arafle
particle ¢i) intime At is calculated by use afz (At). The same anglg appears in Egs.(1a)
and (1b). On the other hand, the scattering angle of partijleghould be calculated by
use of

Sha(at) = et (4

2
-3
NeQ,; At, (6)
47 €0Mhagp ) p

whereAqs = Ay is assumed. 185, (At) = 5,5 (At), then the probability density function
for the scattering angle of particlg) coincides with that for particleof); a common
angley given by Eq.(5) can be used in determining the postcollision velocities of the
(ai, B]). If ng =n, thensg, (At) = 5,4 (At) and the probability density function coincide. In
this case Egs.(1a) and (1b) give the velocities of particlesand (8)) after time increment
At. In generalng # n,, for example in radio-frequency discharge of electronegative ga:
the electron density is only a few percentages of the negative ion density. Also, in plas
containing ions with multiple charges, electron density is several times larger than
density. We can conclude from Eqgs.(4) and (6) that

Sup(At) = Sgy (%At). @)

This equation means that when using Egs.(1a) and (1b) the time increment of pgit)cle
should be(ng/n,) At when particle(wi) is At. This time increment concept is developec
further in the following section.

3.1. Equally Weighted Particles

Let W, represent the common weight of all particles of specdieSimilarly, let Wy
represent the weight of all particlgs We consider the simplest caseWf = Wz (=W) in
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al-pB1 al-p1
a2-B2 o2-p2
a3—pB3 a3 -3
ad -t ad—BY
a5—B5 ab—p2
o6 — 36 ab—p3
al—p7  a7-p1"
®  ®

FIG. 1. Collision pairs for particles of different species: (8) = N; = 7; (b) N, = 7, Ny = 3.

this section. First let us begin the analysis with the cade,0& Ng(=N). Since Coulomb
interaction is a long-range force, the velocities of all particles are changed afteatime
This is best illustrated by defininy pairs of particlesx andg and recalling thatin Eq.(1) a
collision partner of particlexi) is chosen randomly from the set of all particked-igure 1a
showsN (=7) pairs @i, 8j), wheregl, g2, ... are sampled randomly without replacement.
Note that each particle appears only oncé&lipairs.

Let us go back to the discussion on Eq.(7). Hereafter we suppose, for simplicity, that
particles are in a cell with unit volume. We then have

Ne = W, Ng, Ng = Wﬂ Nﬁ, (8)

wheren, (=ng) is the number of real particles in the cell. It is important to remember
that all pairs ¢i, 8j) change velocities in collision. If Eq.(4) is used to obtain the scatterin
angle, the time increment of a simulated particle of spegissAt, which means that the
sum of the time increments & real particles iSNAt. Since the number of collision is
N, the mean time increment per real partielées N x WAt/n, = At. Similarly, the time
increment of a simulated partickeis (ng/n,) At = At; hence, the time increment per real
particleg is alsoAt. It should be now understood that for this case the time increment p
real particle is the same for two species.

Next let us consider the case Bf, # Ng and W, = Wz(=W); note that this implies
N # Ng. We will discuss the case Of, > Ng since the opposite case can be treated similarly
Figure 1b shows the case Bf, =7 andNg = 3. The array o1, g2, 3 is random. Since
Ng < Ny, certain particleg must collide two or three times. The single prime indicates :
second collision and the double prime a third collision. We calculate the scattering ar
by using Eq.(4) and, hence, the simulated partiale time is advanced byit. Now
let us evaluate the time increment per real particle. For specibe time increment is
N, x WAt/n, = At. For specieg the time increment per simulated particlérig /n,) At,
the number of collision ifN,, and the number of real particlesrig; hence, the mean time
increment per real particle i, x W x (ng/n,)At/ng = At, which coincides with the
mean time increment per real particleas expected.

Note that we have advanced the time of a largewd®st At through the use of Eq.(4). If
we usesg, (At) to evaluate the scattering angle, the time of a smalleg seadvanced by
At. Equation (6) can be rewritten as

Sﬁa(At) = S <:—;At) . (9)
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Letus calculate the time increment per real particle from Fig.1b. For spgthedime incre-
mentisN, x W x At/ng = (n,/Nng) At and for specieg itis N, x W x (n,/ng)At/n, =
(ng/Nng)At. We therefore have the same time increment. However, the time incren
changes from cell to cell i, andng are spatially nonuniform, which is inconvenient. We
want to use a common time incremexit’ for all cells. A common time increment is found
by choosingAt = (ng/n,) At’. Note thatAt changes from cell to cell.

Itis simpler to have the time of a larger seaidvance byAt through the use of,4 (At).

In Fig.1b, the sum of the time increments for partigé is 3x (3/7)At, and the sum
for particle 82 and the sum for particlg3 are equal to X% (3/7)At. The mean of the
three sums idt, which corresponds with the time increment per real particle. A comm
time increment is defined by assigning such a mean time increment to a set of particl
simulating a time-evolving physical system; the mean time increment may be called
time increment of a system.

Thus far we have considered the case\gf> Ng. In the case olNg > N,, let us ad-
vance the time of a larger sgtby At through the use ofg, (At). The time increment
per real particle8 is Ng x WAt/ng = At and the time increment per real particteis
Ng x W(n,/ng)At/n, = At. Now a general rule can be stated: Advance the time of
larger set byAt and then the time of a system of particles is advanced by the same t
increment.

3.2. Different Weights for Different Species

Macroscopic properties such as flow velocity and temperature obtained from an ave
of simulated particles show larger fluctuations for smaller numbers of particles. Theref
it is better to employ a nearly equal number of simulated particles for each species ev
there is a large difference among species number densities. This requires the introdt
of different weighting factors to each species. The cas@/p# Wy is now considered.
First let us examine the meaning of a collision between a simulated particith weight
W, and a simulated particlg@ with Wg. The a—g collision for W, =3 andW; =5 and
that forW,, =5 andW; = 3 are shown in Fig.2, where the numbers designate the name:
real particles. Since we consider collisions in pairs, only three real particles of spiecie
undergo collisions in Fig.2a. This can be described through probability theory; simul
particle« undergoes a collision with probabilitys / max(W,, Wg)[=1] and simulated
particle 8 does with probabilityV,, / max(W,, Wg)[=3/5]. This rule is also applicable to
case (b) in Fig.2, where the collision probabilities of partieleend g are now exchanged.

a g a p
1-1 1-1
2-2 2-2
3-3 3-3
—4 4—
-5 5_

(a) (b)

FIG. 2. Collision pairs of real particles: (a), = 3, Wy = 5; (b)) W, = 5, W = 3.
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This methodology is a common Monte Carlo simulation technique [4, 13], which consen
average momentum and energy. The postcollision veloaitieandvy; of particles &i)
and (8j) are given by

\C:i = (1 - Zot)vai + Zoz\/aia (103)

VEJ- = (1 — Zﬁ)Vﬁj + Zﬂ\/ﬂj s (10b)
wherev,; andvy; are given by Egs.(1a) and (1b), and

Prob[Z, = 1] = Wg/max(W,, Ws),
Prob[Z, =0] = 1 — Prob[Z, = 1],
Prob[Zs = 1] = W,/ max(W,, Wp),
Prob[Zg =0] = 1 — Prob[Zg = 1].

Here Prob[ ] denotes probability.

Let us now examine the caseMf > Ng; see Fig.1. We usgg(At) of Eq.(4) to calculate
the scattering angle and advance the time of partigi¢ iy At. In Fig.1b the particles
Bl, B2, p3,andpl” are rename@4, 85, 86, andg7. Then for each collision of particles
(¢i) and @Bi) (i = 1,2,..., N,), the number of real particleg that have collided is
W, x Wg/max(W,, Wg) and the sum of the time increments of these real partieles
At x W, Wg/max(W,, Wg). The total number of real particles mg (=W, N,). Now we
can obtain the mean time increment per real particldote that the mean is calculated for
the total numben,, including real particles that have and have not undergone a collisio
Since the number of pairs ¥, the mean is

W, W 1 W

Ny x At x —= P« = =P At(=Atl).
x XmaX(Wa,Wﬂ)X ( )

N max(W,, Wp)
Similarly, the time increment per real partiggas

n W W, 1 W,
Nax—’sAtx i b

— T x —=——" ___ _At(=At).
n, max(W,, Wg)  ng max(W,, Wg)

The two increments agree, although some real particles do not undergo a collision. St
tically, however, we can interpret this as all real particles have collided and their times
advanced byt’. As before, it is better to chooskt as

_ maX(Wa s Wﬂ)

At
W

At (11a)

for a given time stepzt’. Of course At’ is the time increment of a physical system.

Let us next consider the caself > N, andW, # W;g. Exchangingr andg in Fig.1b,
the case can be studied. We advance the time of a larger IsgtAt through the use of
Sg« (At). The time incremenit’ per real particleg becomes

W, )
" At(=At).
max(W,,, Wg)
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This agrees with the time increment per real particl&or this case we choose

max(W,, Wpg)

At =
We

At (11b)
in the expression fogg, (At), At” being the given time step.

3.3. Different Weights for Different Particles

Let us imagine a uniform plasma in a cylinder. We divide the domain inside the cylin
into cells by equal radial spacimyr with the Debye length. The number of particles in th
cell betweerr andr + Ar is proportional to Zr Ar, wherer is the radial distance. If we
assign the same weight to all simulated particles, the number of particles in a cell nea
axis of the cylinder is very small. This results in a large statistical fluctuation of samp
data. If the number of simulated particles in a cell could be nearly uniform for all cells
is convenient computationally. This idea results in the introduction of a larger weight fc
particle with a larger radius.

LetW,; (i =1,..., Ny) andWjs; (j = 1,..., Ng) be the weights of particle@:i) and
(B]) in a cell. First we consider the caseMf > Ng, see Fig.1b. Since the cell is assume:
to have the unit volume, the number densities are given by

N Ng
=> Wi, ng=> W
i=1 j=1

Let us advance the time of a larger seby At by use ofs,z(At). In Fig.1b the particles
BY, B2, 83, and B1” are renameg4, 85, 86, andB7; the collision pairs aréwi, Bi)
fori=1,..., N,. Consideringxi — i collision, the number of real particlesthat have
collidedisW,; x Wg; / max(W,;, Ws; ). The sum of the time increments of these real particle
is AtW,,; Wgi / max(W,i, Wgi ). The number of real particlesis n,. For N, collisions the
time increment per real particteis given by

Ng
n—ﬂAt (=At), (12)

o

where

%X: Wal Wﬂl
maX(WDtI ’ Wﬁl)

The expression is the same for real partjgl@ herefore, for a given time steft’ we have
onlyto setAt = (n,/nyp) At’ in the equation fog,s (At) to have the system time increment
be common to all cells.

In case ofNg > N, the time of a larger sei is advanced bwt, i.e., the scattering angle
is obtained by use d;, (At). The particlest which have already collided once, twice,
are renamed in order as in the casé\pf> Ng. The time increment per real partickeand
that for particle8 become(n,g/ng) At, wheren,g is given by Eq.(12) with the upper limit
replaced byNg. In this case for a given time steft’ we chooseAt as

n
At = 2 At
Nyp
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1-2 1-2 1-2
3—-4 3—-4 3—-4
5—6 5—-6 5—6
7-8 7-1 7

@ B ()

FIG. 3. Collision pairs for particles of the same species: (a) eNgn(b) oddN,; (c) oddN, (Ref.[2]).

4. COLLISIONS BETWEEN LIKE PARTICLES

Wheng =« Eq.(4) takes the form

INAwe [ Q2 \?
Swa(AD) = (q—> NGl AL. (13)
4 €eoMmy,

We should then form a random array of simulated partiale$he particles in this array
are named 1, 2,.., N,. The array is formed by picking up two by two particles to make
pairs. Figure 3a shows the caseNyf= 8. If N, is an odd nhumber, we make the last pair as
shown in Fig.3b, where the precollision velocity of particléslthe postcollision velocity
of particle 1. Let us rename particlé fdarticle 8 (orN, + 1) whenN, is an odd number.
Figure 3c shows the method of pairing by Takizuka ane 4 which has been simplified
in the proposed method. In Takizuka andefbmethod particles 5, 6, and 7 must collide
twice.

4.1. Equally Weighted Particles

Let weightW, be defined as common to all particles. In reference to Figs.3a and b
us define the number of paids; N = N, /2 for evenN, andN = (N, + 1)/2 for oddN,.
We obtain the scattering angle through Eq.(13); the time of particles is advanct by
The sum of the time increments of all particles (including particia Fig.3b) isN x 2At.
The number of particles i§,. The mean time increment of a particle, which is equal to th
increment per real particle, is

2N At(=At)
N — 9

whereAt’ is a given time step for a physical system. The choicAbin Eq.(13) is

At = N"At’
TN

Note thatAt = At’ for evenN, but At =[N, /(N, + 1]At’ for odd N,. Since an addi-
tional collision is calculated for oddll,, such a correction oAt is necessary. Note that
we haveN = (N, + 3)/2 for odd N, in Takizuka and Ab’s method. That is, if we set
At =[N,/(Ny + 3]At’, we can use their method of pairing. However, one additional co
lision should always be calculated.
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4.2. Different Weights for Different Particles

Let W, be the weight of particle. There areN, particles in a cell with unit volume. The
number of real particles is

We define pairs of particles as indicated in Fig.3a or b. In case of anNyddarti-
cle 7 in Fig.3b is renamed particldl, + 1. The deflection angle is calculated by using
Sw (At), and hence, the time of each particle is advanced\byThe number of colli-
sion pairs,N, is N, /2 for evenN, and (N, + 1)/2 for odd N,. For the first pair 1-2,
particle 1 undergoes a collision with probability.,/max\W;, W,) and particle 2 does
with probability Wy /max\Wi, W»). The number of real particles that have collided i
Wi x Wo/max(Wy, Wo) + W, x Wy /max(W;, Ws), and hence, the sum of the time incre:
ments of real particles iat x 2W; W,/ max(Wi, W»). The mean time increment per real
particle can be obtained by dividing the whole sum oNepairs by the number of real
particlesn,. Itis (N, /Ny) At, where

N ZZN: Wai 1 Wy
o — max(Wai_1, Wa)’

For a given time stept’ of a physical systemjt in the expression of,, (At) is chosen as

Ny ,
At= AL (14)

5. SAMPLE CALCULATIONS

We consider the relaxation of temperatures and flow velocities of electrons (1) and
(2) due to 1-2, 1-1, and 2-2 collisions. Initially electrons are assumed to be in equilibr
with temperaturdo and flow velocityVio. lons are also assumed to be in equilibrium witl
temperaturél;o and flow velocityVs,q. The following values are selected

kT]_Q = 1lkeV, kT20 =100eV,

Vio = vkTio/My1, Voo =0.

It should be noted that the present algorithm is not limited to temporal Maxwellian c
tributions [16]. Initial velocities of electrons and ions are sampled from the Maxwelli
distribution for each species. The purpose of this section is to show the validity of the |
posed weight algorithms. Therefore we consider ions with imaginary mass ef5m;,
which makes the relaxation rate of ions comparable to that of electrons and, hence, gt
shortens the computation time. We also introduce the simplification that the Coulomb
arithm is common to 1-2, 1-1, 2-2 collisions and equal to 15.9. This value correspc
to that of an equilibrium plasma with electron and ion temperatures of 1 keV and der
107t m—3 [10]. We assume that plasma is electrically neutral,

ng = an, (15)
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FIG. 4. Relaxation of electron (1) and ion (2) properties=£Z1): (a) temperatures; (b) flow velocities.

where+eZis the charge of ion, although charge neutrality is not essential in applying t
present theory. The ion density is fixed at 16 m=2 for any Z.

5.1. lon with a Single Charge

We begin with the case & = 1. The time step\t’ of the system is chosen to be10s.
First we obtained the standard data by use of the same weight for two speci®g, 6/,
and N; = N, = 10°, whereW; is the weight and\; is the number of particles. Next we
assign a different weight to each species. The first ca¥éis 5W;, and N; = 10° and
N, =2 x 10*. Note that the charge neutrality condition (15) requika§V; = NoWs. The
condition givesW; < W, for N; > N, and hence Eq.(11a) far=1 andB =2 becomes
At = At/, whereAt is the time step irs;2(At). The relaxation of temperatures and flow
velocities is shown in Figs.4a and b. The solid and dashed lines represent the stan
data forw; = W,. The electron temperatu® shows a small peak in the early stage of
relaxation. We see that the results Y5 = 5W, agree well with the standard data. The use
of the different weights reduced the computation time by 40%. Next the opposite cas
consideredW; = 5W,, andN; = 2 x 10* andN, = 10°; sinceN, > Ny, Eq.(11b) forg =2
anda = 1 becomes\t = At’. Figures 5a and b show the comparison of the obtained da
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FIG. 5. Relaxation of electron (1) and ion (2) properties<£Z1): (a) temperatures; (b) flow velocities.
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with the standard data fal, = W,. We again see almost an exact match between the t
sets of data.

5.2. lon with Multiple Charges

We now consider the case df= 3. Equation (4) shows that there is a large differenc
amongs; 1, S12, ands;,; because of the factat. That is,

InA [/ € \?
S12(At) = - ) n29£23 Z2At, (16a)
T\ €0M12
InA / € \?
si(At) = a > nagrs - ZAt, (16b)
T\ €011
InA / € \?
Sa(At) = —< ) Nagss - Z4At, (16¢)
4 \ eopo2

where InA is assumed to be independent of a collision pair, as stated before, and the rel
ni = Zn, is used in obtaining Eq.(16b). First we consider the standard caég ef\W,.
Equation (15) requirell; = Z N,. Our choice isfN; = 15 x 10* andN, =5 x 10*. Equation
(11a) fora = 1 andB = 2 shows thatzt in Eq.(16a) agrees with the system time incremer
At’. Also, At’s in Egs.(16b) and (16c) agree witkt’ sinceN; andN, are even numbers.
SinceN,is 1/3 0f Ny, intime At eachion collides three times, whereas each electron collic
only once. Because of a large factor 2f(=81) in Eq.(16c) our choice oft(=At") is
107/80 s=1.25x 107° s). The obtained data is shown by the solid and dashed lines
Figs. 6a and b.

Next we consider the case W, = ZW,; Eq.(15) givesN; = N,. Our choice isN; =
5 x 10*. Forthis case itis more convenient to use the saie=1.25 x 10-°s)in Egs.(16a),
(16b), and (16¢). We use Eq.(16a) to calculate 1-2 collisions. Then Eq.(1a)xfarand
B = 2 givesAt = Z(At')12, where(At')12(=At/Z) is the system time increment due to
1-2 collisions. Similarly we haveAt’);; = (At’),; = At from Section 4.1. The system
time increment due to 1-2 collisions igZ of that due to 1-1 and 2-2 collisions. How
do we advance the time of the system? The solution of this question is as follows:
calculate 1-2 collisionZ times by use of Eq.(16a) and, hence, advance the system ti
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FIG. 6. Relaxation of electron (1) and ion (2) properties<£23): (a) temperatures; (b) flow velocities.



652 NANBU AND YONEMURA

by At(=Z x At/Z), and then 1-1 collisions once by the use of Eq.(16b), and lastly 2-
collisions once by the use of Eq.(16c). Clearly, the system time is advancstdfyer this
procedure. The results obtained are compared in Figs.6a and b with the standard dat
W; = W,. The data foW; = ZW; agree well with those foww; = W,. The computation
time is reduced by 30% by introduciMy; = ZW.

We have solved the same problem by assigning a different weight to each particle
check the weight algorithm in Sections 3.3 and 4.2. The walghof ioni is chosen to be

1 .
Wi =C[1+(a 1)m] (i=12...,Np),

wherea = 10.W,; changes fron€C to 10C. The constan€ is determined from
a+1
Ny = ZW2| = 7N2C

We choose the weigh;; for electroni as
Wy = ZW.

We setN; = Ny, then Eq.(15) is satisfied al;; changes fronz C to 10ZC.

Firstlet us consider 1-2 collisions based on Eq.(16a). Equation (12) yi¢litisEq.(16a)
asAt = (n1/n12)(At")12. We chose the system time increménit’);, to be (At") 1o =
At'/Z, whereAt’ = 1.25 x 1079 s. Note theAt’ is the (given) system time an@t’), is
its subinterval. Choosing the subinterval is arbitrary. Note alsathahould be calculated
at each time stefAt’)1, becauséN; (=N,) pairs are chosen randomly without replacemen
at each time step. We repeattimes a set of 1-2 collision calculations and advance th
system time byAt'[=Z x (At’);2]. Next we consider 1-1 collisions by setting the systen
time increment taAt’. The time stepAt in Eq.(16b) is given byAt = (ny/ngp) At/, where
ni; should also be calculated at each time st¢p Similarly, we calculate 2—2 collisions
by use of Eq.(16c), wherat = (n,/n,») At’. The data obtained faN; = N, =5 x 10*
is shown in Figs.7a and b in comparison with the standard dat&/fes W,. Note that in
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FIG. 7. Relaxation of electron (1) and ion (2) properties<£23): (a) temperatures; (b) flow velocities.
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Fig.7 the factoiC in the equations of the weights is omitted. We see that the two data ¢
show almost an exact match supporting the proposed method’s validity.

6. CONCLUSION

Proposed is an algorithm applying Nanbu’s theory of Coulomb collision to weight
particles. Three cases are demonstrated:

(1) All particles in different species have the same weight.

(2) The weight is different for different species but it is the same for all particles ir
species.

(3) The weight is different for each patrticle.

In order to show the validity of the proposed weight algorithm and explain the det:
of the method, some sample calculations are performed on the temporal relaxatic
temperatures and flows of electrons and ions. All cases studied supported the validi
the present weight algorithm. Applications of the proposed method include modeling t
density low temperature plasma, fusion plasma, intense beams, and X-ray laser si
plasma.
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